Wavelet Transform Used for Radio Frequency Coil Magnetic Field Evaluation

I.Frollo, P.Žembery

Institute of Measurement Science, SAS, 842 19 Bratislava, Slovak Republic

Introduction. With wavelets, one can perform multiresolution analysis, literally sorting signal components by their location and resolution scale [1]. Whereas Fourier Transform methods sort signals into their spectra, the wavelet transforms sort signal or data details into a locale-scale collection. Wavelets already enjoy connection with many fields and nuclear magnetic resonance imaging is starting to use them for signal and image processing [2]. Magnetic field data represented by 2D Fast Discrete Wavelet Transform (DWT) shows new feature suitable eg for a new coil systems design. As an example for wavelet transform components display and evaluation, a bi-planar RF coil designed in a form of metal planes [3] was used. Small homogeneity differences show significant changes in selected wavelet components.

<u>Methods.</u> An RF narrow-gap planar coil system where the width-to-plane separation ratio (w/h) is more than 10:1 with limited dimensions of metal sheets was used as a model for wavelet transform based magnetic field inhomogeneities evaluation. Inhomogeneities of the generated magnetic field in a rectangular volume were expressed as Percentage field deviation (PFD) with respect to the coil's centre value of magnetic field. The 4th order Coifman system "Coif4" as a low-pass filter representing the scaling function was used. The high-pass filters were automatically calculated from the low-pass filter coefficients.

Fig.1 PFD of the magnetic field of planar RF coil depicted as a 3Dplot and as a density plot of the inverted Treshold2D Wavelet Transform. Left pair: non-homogeneous. Right pair: quasi-homogeneous field.

<u>Results.</u> For magnetic field evaluation the DWT procedure: trans=Transform2D[data] shows significant amplitudes increasing of low level wavelet components. We get similar results by Zero2DComponents[trans,c1,c2,c3,c4] procedure selecting lower levels components. After InverseTransform2D[trans] represented as a 3DPlot, the magnetic field components belonging to the selected wavelet components are seen. Threshold2D[trans, threshold] procedure for lower values of threshold levels shows substantial changes in the after-filtered InverseTransform2D[thresh], (DensityPlot), see Figure 1. Amplitudes of low level components for non-homogeneous magnetic field are increasing (in our example for about 100 %).

<u>Conclusion</u>. An attempt was made to use 2D Fast Discrete Wavelet Transform procedures for magnetic field of RF coils evaluation regarding their non-homogeneities. The method seems to be useful both for new coil systems design and also for testing the magnetic fields: RF, stationary or gradient, used in NMR imaging and/or spectroscopy. New resultant features of the presented magnetic field representation could be also a suitable tool for magnetic field correcting system design. More coil magnetic fields were tested by the 2D Fast Discrete Wavelet Transform.

References

- [1] Crandal E, R. [1994], Proj. in Sc. Computation, Springer-Verlag, New York, Inc., 197-226.
- [2] Keahey T, A. [1997], Discrete Periodic Wavelet Tr. in Mathematica, Los Alamos, NM 87545
- [3] Frollo I, Plačková A. [1996], ESMRMB `96, 274.