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Abstract 

   A novel approach is proposed for magnetic field distribution testing, its symmetry, non-
homogeneities and gradient detection and for non-linear area shapes indications. We have 
used 2D Fast Discrete Wavelet Transform (DWT) procedures. A radio-frequency (RF) 
narrow-gap bi-planar coil system was used as a model. This coil is used for planar imaging 
using nuclear magnetic resonance methods. Small magnetic field homogeneity differences of 
this coil show significant changes in selected wavelet components. The method is useful both 
for new coil systems design and optimization and also for testing the magnetic fields.   
 

1. Introduction 
 
    High homogeneity of stationary and radio frequency magnetic fields for NMR 
measurement and imaging is desirable. By means of magnetic field calculation it is possible 
to plot the magnetic field distribution and evaluate its homogeneity according to known 
procedures (relative deviation, mean quadratic deviation, percentage deviation, 2D Fourier 
transform, histograms, etc.). With wavelets, one can perform multiresolution analysis, literally 
sorting signal components by their location and resolution scale [1, 2]. 
    Magnetic field data represented by 2D Fast Discrete Wavelet Transform shows new 
features suitable eg for a new coil systems design using genetic algorithms where an object 
function is represented by a selected WT component. As an example a bi-planar RF coil 
designed in a form of metal planes was used. 
 

2.  Method 
  
   An RF narrow-gap planar coil system (where the width-to-plane separation ratio (w/h) is 
more than 10:1 with limited dimensions of metal sheets) was used as a model for magnetic 
field inhomogeneities evaluation, Fig. 1.  
 
For the magnetic field B1 = Hz of the planar system the following formula was derived: 
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  Resultant magnetic field is a sum of two integrals, one for upper plane (bi=b), the second one 
for the lower plane (bi=-b). The feeding currents of the upper and lower planes are oriented in 
opposite directions, +I and –I. 
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Fig.1 Central part of a planar RF coil system with limited plane length 2L, width w=2a, 

separated by a distance h=2b. 
 
   The generated magnetic field in a rectangular volume was expressed as Percentage Field 
Deviation (PFD) with respect to the coil`s centre value of magnetic field:  
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    For the planar coil system the following requirements must be assumed: Maximal intensity 
of the magnetic field strength B1 in the volume for imaging and minimal inhomogeneities in 
the volume for imaging in a narrow gap. 
    In our case for design and optimization of the planar coil system regarding minimal 
inhomogeneities of the generated magnetic field in a rectangular volume the Percentage Field 
Deviation (PFD) according to equation (2) was used.  
 
2.1  Wavelet Transform 
   Wavelets provide convenient sets of basis functions for function spaces used for sorting 
signal components by their location and resolution scale. Whereas Fourier Transform 
methods sort signals into their spectra, the wavelet transforms sort signal or data details into 
a locale-scale collection. Wavelets already enjoy connection with many fields and nuclear 
magnetic resonance imaging is starting to use them for signal and image processing [2, 3]. 
Magnetic field data represented by 2D Fast DWT shows new feature suitable eg for a new 
coil systems design. Small magnetic field homogeneity differences of the bi-planar RF coil 
show significant changes in selected wavelet components. 
 
We have used two-dimensional scaling function or wavelet as a product of two 
one-dimensional functions: 
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We assume that both φ(x) and  φ(y) satisfy the dilation equation:  
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. 2. Magnetic field evaluation using the 4th order Coifman wavelet system “Coif4”. Left 
mn: Non-homogeneous magnetic field. Right column: Quasi-homogeneous magnetic 

d.     Procedures: 
3D plot of the Percentage Field Deviation = [data] 
Trans2D[data, Coif4] =[trans] 
Threshold2D[trans,2]=[thresh] 
InverseTrans 2D[thresh, Coif4] 
Zero2DComponents[trans,c1,c2, c3,c4] =[Zero] 
Inverse Transform2D[Zero] 



    In our case the 4th order Coifman wavelet system “Coif4” [4] as a low-pass filter 
representing the scaling function was applied. 
    For magnetic field evaluation the following DWT procedures were used: 
trans=Transform2D[data, Coif4], where [data] = Percentage Field Deviation, Fig. 2a,b.  
    The following performed procedures show significant amplitudes changes of low level 
wavelet components:  
    Threshold2D[trans, threshold 2]=[thresh], Fig. 2c. Amplitudes of low level components 
for non-homogeneous magnetic field are increasing (in our example for about 100 %). 
    This procedure for lower values of threshold levels shows substantial changes in the after-
filtered InverseTrans2D [thresh,Coif4], see Fig. 2d.  
    We get similar results by Zero2DComponents[trans, c1,c2,c3,c4]=[Zero], Fig. 2e, 
procedure deselecting lower levels components [c1,c2,c3]. After Inverse Transform-
2D[Zero] represented as a 3DPlot, the magnetic field components belonging to the selected 
wavelet components are seen, Fig. 2f.  
 
3.  Conclusion 
      
    An attempt was made using 2D Fast Discrete Wavelet Transform procedures for magnetic 
field of an RF coil evaluation regarding its non-homogeneities. The proposed method seems 
to be useful both for new coil systems design, optimisation and also for testing the magnetic 
fields: RF, stationary or gradient, used in NMR imaging and/or spectroscopy or as a suitable 
tool for magnetic field correcting system design.  
   In our case the Wavelet Transform has been used for magnetic field optimisation. A 
selected Wavelet Transform component (eg. Threshold2D) has been chosen as an “object 
function”. The maximal value of the object function represents the level of inhomogeneities. 
The task of an optimisation procedure (based on genetic algorithm) was to minimise the 
peak value of the object function (see Fig.2 c.). The advantage: significantly faster computer 
procedure in comparison with classical methods using relative deviations, Fourier transform, 
histograms, etc. 
    For practical application in nuclear magnetic resonance imaging, a bi-planar RF coil was 
designed as a multiwire narrow-gap coil system instead of parallel conductive plates.   
    More coils systems and their magnetic fields used in nuclear magnetic resonance imaging 
were tested by 2D Fast Discrete Wavelet Transform.  
 
 

References 
  
[1]  Crandal E, R.: Projects in Scientific Computation, Springer-Verlag, New York, Inc., 

1994, pp. 197-226. 
[2]  Keahey T, A.: Discrete Periodic Wavelet Tr. in Mathematica, Los Alamos, NM 87545, 

1997. 
[3]  Wavelet Explorer, Wolfram Research, Wolfram Media, Inc., 1997. 
[4]  Coifman, R., Wickerhauser, M.V.: Entropy-based algorithms for best basis selection, 

IEEE Trans. on Information Theory, 38, 1992, No.2, 713-718. 


	Ivan Frollo, Peter Zembery
	Institute of Measurement Science, Slovak Academy of Sciences,
	Dubravska 9, 842 19 Bratislava, Slovak Republic
	Abstract
	
	1. Introduction
	2.  Method
	3.  Conclusion
	References




